
National Aeronautics and
Space Administration

NASA Technical Memorandum 107104
AIAA–96–1127

Description and Simulation of a Fast
Packet Switch Architecture for
Communication Satellites

Jorge A. Quintana
Lewis Research Center
Cleveland, Ohio

and

Paul J. Lizanich
Analex Corporation
Brook Park, Ohio

Prepared for the
16th International Communications Satellite Systems Conference
cosponsored by AIAA, CASI, AAAF, DGLR, and IEICE
Washington, DC, February 25–29, 1996



1

DESCRIPTION AND SIMULATION OF A FAST PACKET SWITCH
ARCHITECTURE FOR COMMUNICATION SATELLITES

Jorge A. Quintana
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

and

Paul J. Lizanich
Analex Corporation

Brook Park, Ohio 44142

Abstract

The NASA Lewis Research Center has been
developing the architecture for a multichannel
communications signal processing satellite (MCSPS) as
part of a flexible, low-cost meshed-VSAT (very small
aperture terminal) network. The MCSPS architecture is
based on a multifrequency, time-division-multiple-access
(MF-TDMA) uplink and a time-division multiplex (TDM)
downlink. There are eight uplink MF-TDMA beams, and
eight downlink TDM beams, with eight downlink dwells
per beam. The information-switching processor, which
decodes, stores, and transmits each packet of user data to
the appropriate downlink dwell onboard the satellite, has
been fully described by using VHSIC (Very High Speed
Integrated-Circuit) Hardware Description Language
(VHDL). This VHDL code, which was developed in-
house to simulate the information switching processor,
showed that the architecture is both feasible and viable.
This paper describes a shared-memory-per-beam
architecture, its VHDL implementation, and the simulation
efforts.

Introduction

Over the past several years, new satellite
communications systems that use a meshed-VSAT (very
small aperture terminal) architecture have been developed.
These systems are geared toward applications requiring
data rates of 1.544/2.048 Mb/s.1 NASA envisioned a need
for a meshed-VSAT system that would provide low data
rate capability for interactive data, voice, facsimile and
video conferencing applications. Such a network would
have to be capable of single-point and multicast (multiple-
point) transmission, while still being competitive with
existing terrestrial communication systems.1 The
multichannel communications signal processing satellite
(MCSPS) architecture, shown in Fig. 1, is based on a

multifrequency, time-division-multiple-access (MF-
TDMA) uplink and a time-division multiplex (TDM)
downlink. There are eight uplink MF-TDMA beams, and
eight downlink TDM beams, with eight downlink dwells
per beam. The advantages of this architecture are discussed
in a previous paper.1

As Fig.1 shows, the information-switching processor
(ISP) is the most important subsystem in the architecture.
This portion of the MCSPS was developed and simulated
in-house by using VHSIC Hardware Description Language
(VHDL). NASA Lewis Research Center’s computer-
aided-design capabilities combined VHDL code with
schematics to simulate this architecture fully. Thus, VHDL
describes in software the hardware characteristics of digital
components. The code’s flexibility allows it to be compiled
and synthesized to create application-specific integrated
circuits (ASIC’s). These devices may be easily
reprogrammed when necessary; thus, both debugging
time and hardware complexity are reduced.

Background

The MCSPS architecture supports both the more
conventional circuit-switched user data as well as packet-
switched user data. By allocating bandwidth only on
demand, it allows destination-directed packet switching
of the user data, a more efficient use of the spectrum than
the more traditional circuit switching. However, allocating
bandwidth on demand has the potential to cause contention
and congestion problems.

Contention occurs when multiple users try to transmit
data to the same place simultaneously. We can eliminate
this problem easily by using a TDM bus speed that is
higher than the combined rates of all the transmitting
users. For this architecture, restricting the total bandwidth
of user data through the satellite to a throughput of less
than 1 Gb/s (the current level of technology) eliminates
contention.
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Congestion occurs because of the unpredictable traffic
patterns in a real system. By monitoring traffic patterns,
we can develop network control algorithms to allocate
system resources dynamically. Furthermore, the statistical
data on traffic characteristics could be used to establish a
potential threshold for a network controller to prevent
congestion. Although the shared-memory-per-beam
architecture is contention-free, possible congestion control
algorithms have to be investigated further.

To greatly reduce the amount of onboard memory
storage required, the system is designed to use a subpacket

scheme,1 as shown in Fig. 2. Each 2048-b-long packet of
user information is broken down into sixteen 128-b
subpackets. The first subpacket is a header subpacket
containing all the necessary destination information; it is
followed by 15 subpackets containing user data. The ISP
uses the header information to properly route each of the
15 data subpackets to its correct beam and destination
dwell.

Uplink data are transmitted at 2.048 Mb/s by using 1
of 32 frequencies (per uplink beam) in an MF-TDMA
scheme.1 The uplink frame is 32 ms long to allow
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transmission of one complete packet/frame. To take full
advantage of the subpacket scheme, the uplink frame is
further subdivided into 16 subframes, the first of which is
dedicated to header subpackets and the remaining 15 to
data subpackets (Fig. 2).

The ISP reads the incoming headers and decodes each
packet’s destination. To further save both onboard memory
storage space and uplink bandwidth, the packets can be
transmitted either to one downlink dwell (point-to-point
connection) or to multiple downlink dwells (multicast).

The satellite downlink frame lags the uplink frame by
approximately one subframe. This lag allows the entire
header subframe to be processed before the data are
transmitted down in a TDM manner at 160 Mb/s.

Architecture

The ISP design is based on a shared-memory-per-
beam architecture that is fully discussed in “Fault Tolerant
Onboard Packet Switch Architecture for Communication
Satellites: Shared Memory Per Beam Approach.”2 The
architecture consists of three major subsystems: the input
module, the control module, and the shared-memory
module. A test bench was also added to simplify packet
generation and to test the system’s functionality. A detailed
block diagram of the architecture is shown in Fig. 3.

Input Module

The input module consists of two different VHDL
codes; these are the TDM Bus and the Dwell Header
Decoder. The TDM Bus synchronizes the control and data
buses while decoding the packet’s destination. Since this
information is contained only in the header subframe, the
VHDL block stores the destination for the next 15
subframes to route the subpackets to the appropriate
downlink beam.

Once the proper destination beam has been enabled,
the Dwell Header Decoder creates the write signal for the
destination Dwell FIFO’s (first-in, first-out) memories,
depending on point-to-point or multicast connection. If
the multicast bit is set, then all eight Dwell FIFO’s will be
enabled for writing; if it is not set, then only the appropriate
FIFO is enabled. Although true multicast is allowed at a
beam level (subpackets can be transmitted to multiple
beams), the switch performs broadcast (transmission to
all dwells) only at a dwell level.1

Control Module

The control module contains three VHDL codes: the
Synch, the Processor, and the Dwell FIFO’s. The Synch
block provides basic system timing for all blocks in the
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architecture, and thus makes the system fully synchronous.
The Processor monitors and controls all the blocks in the
architecture to ensure proper operation of the switch.
Since the  Address Control Memories (ACM’s) and the
Dwell FIFO’s are used in a “ping-pong” configuration, the
Processor has to monitor the frame and subframe counts to
properly create write and read signals for these blocks.
Because of the complexity of and the strict timing inherent
to the Processor, it is by far the most important piece of
VHDL code in the architecture.

The Dwell FIFO’s store addresses that point to the
Shared RAM during the header subframe. In the subsequent
15 subframes (data), these FIFO’s are read sequentially
with the help of the Processor. Although the dwell times
initially were assigned to be 12.5 percent (1/8) of the
subframe time (2 ms), they are fully programmable on a
frame-by-frame basis. The dwell times manage the number
of subpackets to be read in each dwell by controlling the
duration of the FIFO’s read signal.

The Dwell FIFO’s, along with the almost-full flags,
can also be used as a monitor for congestion control.
Although such a situation was not included in the
simulation, the codes can detect a possible overflow
condition and signal the transmitting terminal to slow the
transmission rate. This capability allows various congestion
control solutions to be implemented.

Shared -Memory Module

The shared-memory module has four different blocks:
the Shared RAM, two Counters, the ACM, and the  Address
Pool FIFO (APF). The Counters provide the two least
significant address bits (four 32-b words/subpacket) to
write and read the data from the Shared RAM. Since all the
modules in the architecture work at a subpacket rate
(128 b/subpacket), and the Shared RAM works at a word
rate (32 b/word), these Counters are needed to provide
read and write addresses to the RAM.

The Shared RAM is a dual port memory (10k x 32 b)
shared by all eight destination dwells. This memory reads
the next available address from the APF to write the data,
and uses the ACM address to transmit it back to the user.2

The ACM contains a pair of “ping-pong” RAM
memories. That is, data are written into one memory
(ping) while the second memory is being read out (pong).
These memories are ping-ponged on a subframe basis and
their read/write lines are controlled by the Processor. Both
memories are written sequentially, but read randomly
(depending on the Dwell FIFO being read); thus temporal
switching occurs.2 The ACM also creates a multicast
signal to prevent addresses of multicasted subpackets
from being written prematurely into the APF.

The APF provides available addresses to the Shared
RAM to write the incoming data. At startup, this FIFO is

full (i.e., all addresses are available), and it is read by the
Shared RAM on a subpacket basis. Since the Shared RAM
always reads the next available address from the APF, it is
extremely important to keep the addresses of multicast
subpackets from being written back prematurely into the
APF.2 Such premature writing may allow the Shared
RAM to read the address (since it is available) before it has
been used by all eight destination Dwell FIFO’s. This
would result in erroneous data being sent down to the user.

Test Bench Module

To simulate this architecture fully, an ISP test bench
consisting of a subpacket generator module was created.
The generator created 6 multicast and 21 single-destination
subpackets/subframe. Each subpacket was created so that
it was easily traced by filling the fields with numbers
representing the frame, subframe, source (user), beam,
and destination dwell, as shown in Fig. 4. In total, 69
downlink subpackets of the 80 available are used in this
example, with dwell usage ranging from 60 to 100 percent.

During the simulation process, several modifications
were made to the original concept. The original concept
called for a 20k x 16-b RAM. To comply with realistic bus
speed and memory access times, the TDM Bus was
reconfigured to be 32 b wide to increase the cycle time to
a more reasonable 61 ns. This change in the bus width
subsequently affected the TDM Bus word rate and packet
generation, which were simulated at 60 ns. The uplink-to-
downlink data-rate ratios (525.288-to-160 Mb/s) were to
be kept approximately the same, so the downlink word
cycle time of 192 ns was chosen.

For simulation purposes only, the uplink frame was
reduced to 256 subpackets of data per subframe, instead of
the original 8192, because it was impractical to simulate
and verify so many subpackets. This resulted in the
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proportional scaling back of several other parameters. The
downlink frame length was scaled back to 80 subpackets/
subframe and the sizes of the Shared RAM, APF, ACM,
and Dwell FIFO’s were also appropriately reduced. This
system configuration and the use of “generic” statements
that allowed users to change system parameters with ease
increased the system flexibility and significantly reduced
the amount of CPU time needed to simulate and debug the
architecture.

Data Flow

The flow of the data can be divided into two phases:
the uplink phase (data going from the ground to the
satellite) and the downlink phase (data from the satellite
back to the ground).

Incoming packets are processed by the TDM Bus and
the Dwell Header Decoder to determine their beam and
dwell destination. Once the proper beam and dwell(s)
within the beam have been enabled, the subpacket is
written into the Shared RAM, as illustrated in Fig. 5. The
RAM always fetches the next available address from the
APF to write the uplink data.2

At startup, the APF is full because all the possible
write addresses are available for the Shared RAM. Once

an address is read from the APF, it is stored in ACM A or
B, depending on whether the subframe is even (A) or odd
(B). Then, the ACM address is written in the appropriate
Dwell FIFO, becoming a double pointer to the RAM’s
write address.2 This process is then repeated for all the
subpackets in the first subframe.

In the next subframe, incoming subpackets continue
to be read while the previous subframe is being read. The
data flow for the downlink is illustrated in Fig. 5. First, the
Dwell FIFO’s are read sequentially, one FIFO at a time.
These FIFO’s contain the ACM address that points to the
Shared RAM address to be read. Once the ACM address
from the FIFO is read, then the ACM is read. The ACM
contains the most significant bits of the Shared RAM’s
read address. The least significant bits are provided by a
Counter, which reads out the four words contained in a
subpacket. Once the Shared RAM is read, its reading
address is written back into the APF to show that a
subpacket has been transmitted from that location and the
location is now available for writing again.

However, this sequence presents a problem for
multicast subpackets. In case of a multicast, all eight
Dwell FIFO’s contain the same ACM address that points
to a common RAM location. Therefore, a distinction
between multicast and nonmulticast packets must be made
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to avoid writing the address back prematurely into the
APF. If this distinction is not made, the RAM might read
the address from the APF (since it is available) and then
write an incoming packet in that location before all the
dwells have read the multicasted subpacket. Such an
overwrite will result in an unacceptable transmission
error.

To preclude this problem, a multicast signal that
distinguished between multicast and nonmulticast packets
was created. In the nonmulticast case, the Shared RAM’s

address of the transmitted subpacket is written immediately
into the APF. During multicasting, the addresses are not
written back into the APF until the last dwell time (when
the eighth Dwell FIFO is read), to avoid an overwrite
situation.

A useful example of the architecture’s functionality is
provided in Fig. 6. As shown in this figure, the subpackets
are written into the Shared RAM. The “writing” address is
then stored in the ACM. Next, the ACM address is written
in the appropriate Dwell FIFO(s). Subpacket 1, for instance,

Data In

Subpacket     Destination

	 1	 Dwell 0
	 2	 Dwell 7
	 3	 Multicast
	 4	 Dwell 4
	 5	 Multicast
	 6	 Multicast
	 7	 Dwell 2
	 8	 Dwell 1
	 9	 Dwell 1
	 10	 Dwell 6

Shared RAM

Subpacket     Address

	 1	 1A
	 2	 1B
	 3	 1C
	 4	 1D
	 5	 1E
	 6	 1F
	 7	 20
	 8	 21
	 9	 22
	 10	 23

Data Out

Subpackets    Destination

	 1, 3, 5, 6	 FIFO 0
	 3, 5, 6, 8, 9	 FIFO 1
	 3, 5, 6, 7	 FIFO 2
	 3, 5, 6	 FIFO 3
	 3, 4, 5, 6	 FIFO 4
	 3, 5, 6	 FIFO 5
	 3, 5, 6, 10	 FIFO 6
	 2, 3, 5, 6	 FIFO 7

	 00	 02	 04	 05	 --

0

	 02	 04	 05	 07	 08

1

	 02	 04	 05	 06	 --

2

	 02	 04	 05	 --	 --

3

	 02	 03	 04	 05	 --

4

	 02	 04	 05	 --	 --

5

	 02	 04	 05	 09	 --

6

	 01	 02	 04	 05	 --

7

Dwell FIFO's

Fig. 6 Switching example.
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is going to dwell 0. Once the subpacket is written into the
Shared RAM, the RAM address (1A) is stored in the ACM
(location 00). Then, this location (00) is written in Dwell
FIFO 0, since this is the destination dwell for this subpacket.
For a multicast subpacket, the process is the same, except
that the ACM address is written in all Dwell FIFO’s (see
subpacket 3).

On the downlink, each Dwell FIFO is read
sequentially. These FIFO’s provide the read address to the
ACM, which contains the Shared RAM’s read address of
the subpacket to be transmitted down.

Summary of Results

A shared-memory-per-beam approach for an onboard
destination-directed packet switch (DDPS) architecture
has been fully simulated as part of a multichannel signal
processing satellite (MCSPS), an in-house effort at NASA
Lewis Research Center. The various components of this
architecture were described by VHSIC Hardware
Description Language (VHDL). The simulation consisted
of transmitting 27 uplink subpackets /subframe (21 for
single point and 6 multicasted), which resulted in 69
downlink subpackets/subframe from the 21 single-point
subpackets plus 48 multicast subpackets (6 times 8 dwells).

The architecture was simulated for the duration of
three frames and was tested for

-- Proper clock generation
-- Spatial switching (beam enable)
-- Temporal switching (dwell enables)
-- Single-point and multicast connectivity
-- Ping-pong functionality for ACM
-- Ping-pong functionality for dwell FIFO’s
-- Adjustable dwell times
-- APF functionality

Possible algorithms for congestion control were not
included in the simulation because of the complexity and
variety of these algorithms. However, generic statements
were used to allow for potential changes in the system
requirements; thus, the architecture is fully flexible and
reconfigurable. Source codes are available and are well
documented for future implementations of the design.
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